角动量¶
力矩和力偶¶
力矩¶
在绕轴转动的情况下,力矩是改变物体绕轴转动状态的原因。
力矩等于力在与轴垂直的平面上的分量 \(F\) 和 \(F\) 的作用线到轴的距离 \(d\)(力臂)的乘积。
其单位为 \(\mathrm{N\cdot m}\)(牛顿米,不能记为焦耳);定义式为:
\[ M=Fd=Fr_\perp=Fr\sin\theta \]
力矩是一个矢量,它不仅有大小,而且有方向,且满足平行四边形加法法则。
在绕轴的情况下,其方向视其作用使物体从静止发生绕轴转动是逆时针转还是顺时针转,前者取为正,后者取为负(这种判定称右手定则)。
因此在定轴转动情况下,力矩 \(M\) 可用代数值表示。
一般情况下,常把力矩写成位矢 \(r\) 与力 \(F\) 的叉积:
\[ \bm M=\bm r\times\bm F \]
其大小为:
\[ |\bm M|=|\bm r||\bm F|\sin\theta \]
因而,如果是定轴转动,只需求代数和。
若有多个力作用于物体,物体受到的总力矩等于各分力产生力矩的矢量和。
力偶¶
力偶是一种只有合力矩,而不产生合力的作用力系统,不会给予刚体质心任何加速度。
作用于刚体时,力偶能够改变其旋转运动,同时保持其平移运动不变。
力偶所产生的力矩称为力偶矩,它与力矩不同,改变力矩的参考点并不影响力偶矩的大小。
一般来说,一对大小相等、方向相反但不共线的力称为力偶:
\[ |F_1|=|F_2|=|F| \]
对于与力偶所在平面垂直的任一轴,这一对力的力矩的代数和称为力偶矩:
\[ M=F_1|OA|-F_2|OB|=F\cdot|AB| \]
即力偶矩等于力乘两平行力间距离,它与轴的位置选取无关。
因而在计算力偶矩时,轴的选取有其任意性。
定轴平衡¶
可绕定轴转动的物体平衡的条件是:作用在物体上各力对轴的力矩代数和等于零。
\[ \sum M_i=0 \]
一般物体平衡¶
若物体处于静止状态,它既不发生移动,又不发生转动,其平衡条件应该是合力为零,合力矩为零(刚体平衡条件下,合外力矩为零)。
方程就是上面两个合在一起。
本页面最近更新:正在加载中,更新历史。
编辑页面:在 GitHub 上编辑此页!
本页面贡献者:RainPPR。